JAWABAN PAS MATEMATIKA KELAS XI SEMESTER I
Nomer 1.
Diketahui premis-premis berikut :
Premis 1 = Jika masyarakat membuang sampah pada tempatnya maka lingkungan bersih
Premis 2 = Jika lingkungan bersih maka hidup akan nyaman
simpulan yang sah dari kedua premis tersebut adalah
Jika masyarakat membuang sampah pada tempatnya maka hidup akan jadi nyaman
Nomer 2.
2.Buktikan bahwa : 1+3+5+...+ (2n-1) =n2
angkah induksi
1) n = 1
2) n = k
3) n = k + 1
1 + 3 + 5 + . . . + (2n - 1 ) = n²
i) n = 1
2(1) - 1 = 1²
2 - 1 = 1
1 = 1 (benar)
ii) n = k
1 + 3 + 5 + . . . + (2k - 1) = k²
iii) 1 + 3 + 5 + . . . + (2k - 1) + {2(k +1) -1 } = (k+1)²
k² + 2k + 2 - 1 = k² + 2k + 1
k² + 2k + 1 = k² + 2k + 1
Nomor 3.
Nomor 4.
Nomor 5.
Nomor 6.
1) buktikan kebenaran untuk
(Benar)
2) asumsikan benar untuk
,
( menunjukkan bahwa merupakan kelipatan 9)
3) cek kebenaran untuk
akan terbukti benar jika habis dibagi 9
bisa buktikan itu dengan induksi lagi
buktikan bahwa habis dibagi 9
1) cek kebenaran untuk
(benar)
2) asumsikan benar untuk
3) cek kebenaran untuk
terbukti bahwa habis dibagi 9 benar
maka pernyataan awal tadi juga benar
Nomor 7.
Buktikan untuk masing masing bilangan asli n _> 5 akan berlaku 2n-3<2n-2
maaf kalau salag
Penjelasan dengan langkah-langkah:
n_>5={1,2,3,4,5}
2n-3<2n-2
=2(1)-3<2(1)-2
=(-1)<0(benar)
2(2) -3<2(2) -2
=1<2 (benar)
2(3) -3<2(3) -2
=3<4(benar)
2(4) -3<2(4) -2
=5<6( benar)
2(5) -3<2(5) -2
=7<8( benar)
Nomor 8.
penyelesaian dari sistem persamaan 2x-3y=-13 dan x+2y=4 adalah?
persamaan x+2y=4 kita kalikan dengan 2, maka menjadi
2x+4y = 8 -------> (persamaan 1)
2x-3y = -13 ------> (persamaan 2)
--------------- - (dikurangi)
7y = 21
y = 21/7
y = 3
nilai y = 3 kita masukkan kdlam salah satu persamaan di atas, misalkan pada
persamaan x+2y = 4,
x+2.3 = 4
x+6 = 4
x = 4-6
x = -2
jadi penyelesainnya adlh x= -2 dan y = 3
Nomor 9.
Harga 5 kg gula dan 30 kg beras adalah Rp410.000,00, sedangkan harga 2 kg gula dan 60 kg beras adalah Rp740.000,00. Harga 2 kg gula dan 5 kg beras adalah
gula = x
beras = y
5x + 30y = 410.000 |*2
2x + 60y = 740.000 |*1
10x + 60y = 820.000
2x + 60y = 740.000
_________________-
8x = 80.000
x = 10.000
subtitusikan x nya ke persamaan
2x + 60y = 740.000
2(10.000) + 60y = 740.000
20.000 + 60y = 740.000
60y = 720.000
y = 12.000
jadi, harga 1kg gula = Rp 10.000 dan 1kg beras = Rp 12.000
maka 2kg gula dan 5kg beras
= 2(10.000) + 5(12.000)
= 20.000 + 60.000
= Rp 80.000
Nomor 10.
Tentukan daerah bersih dari pertidaksamaan linear berikut 5x+3y <15
Untuk x = 0
5x + 3y = 15
5 (0) + 3y = 15
3y = 15
y =
y = 5 titik (0, 5)
Untuk y = 0
5x + 3y = 15
5x + 3 (0) = 15
5x = 15
x =
x = 3 titik (3, 0)
Jadi garis 5x + 3y = 15 melalui titik (0, 5) dan (3, 0)
Nomor 11.
Tentukan daerah kotor dari pertidaksamaan linear berikut 2x-5y > 20
Penjelasan dengan langkah-langkah:
2x-5y>20
titik potong di y
x=0
2(0)-5y>20
-5y>20
y<20/-5
y<-4
Hp { 0,-4}
titik potong di x
y=0
2x-5(0)>20
2x>20
x>20/2
x>10
Hp {10,0}
Hp{ 10,0 ; 0.-4}
Nomor 12.
5x + 6y ≥ 30 (0,5) (6,0) *karena a positif dan tanda ≥ maka daerahnya berada di kanan garis
2x + y ≤ 0 (0,0) (0,0) *karena a negatif dan tanda ≤ maka daerahnya berada di kanan garis
Y ≥ 2 *daerah berada pada rentang y ≥ 2, y € r
Maka daerah penyelesaian dari model mtk tsb berada di daerah III
Nomor 13.
Daerah yang diarsir pada gambar adalah himpunan penyelesaian dari sistem pertidaksamaan 3x + 5y ≤ 30 ; 2x - y ≤ 4 ; x ≥ 0 dan y ≥ 0.
Penyelesaian Soal :
LANGKAH PERTAMA (I)
Buatlah sistem pertidaksamaan pada setiap garis dengan menggunakan cara sebagai berikut :
Persamaan garis I melalui titik (0,6) dan (10,0) sehingga :
ax + by = ab
6x + 10y = 6.10
6x + 10y = 60 .... (÷2)
3x + 5y = 30
Kemudian perhatikan daerah arsiran yang mengarah ke bawah atau melalui titik (0,0). Jika arsiran melalui titik (0,0) maka jika diuji titik (0,0) pernyataan dikatakan benar :
3x + 5y = 30
3.0 + 5.0 = 30
0 + 0 = 30
0 ≤ 30 (Benar)
Pertidaksamaannya : 3x + 5y ≤ 30
Persamaan garis II melalui titik (0,-4) dan (2,0) sehingga :
ax + by = ab
-4x + 2y = (-4).2
-4x + 2y = -8 .... (÷ 2)
-2x + y = -4
Kemudian perhatikan daerah arsiran yang mengarah ke sisi kiri atau melalui titik (0,0). Jika arsiran melalui titik (0,0) maka jika diuji titik (0,0) pernyataan dikatakan benar :
-2x + y = -4
(-2).0 + 0 = -4
0 + 0 = -4
0 ≥ -4 (Benar)
Pertidaksamaannya :
-2x + y ≥ -4 .... (× -1)
2x - y ≤ 4
Kemudian pada arsiran juga terdapat garis x ≥ 0 dan y ≥ 0.
Sehingga pertidaksamaannya adalah :
3x + 5y ≤ 30 ; 2x - y ≤ 4 ; x ≥ 0 dan y ≥ 0.
Nomor 14.
Nilai Maksimum 3x + 2y ?
x + y > 5
sumbu x ; y = 0 ( 5, 0)
sumbu y ; x = 0 ( 0, 5)
maka Nilai Maksimumnya adalah
3x + 2y
( 5, 0) = 3(5) + 2(0) = 15
(0, 5) = 3(0) + 2(5) = 10
Nilai maksimum nya adalah 15
Nomor 15.
Diketahui=
X = banyaknya sedan
Y = banyaknya truk
Luas Parkiran:
sedan= 15
Truk = 15
Kapasitas 420
Kuantitas:
sedan= 1
Truk = 1
Kapasitas 60
Jawab:
•Persamaan garis 1 : 5x + 15y = 4200
Titik (0,0) merupakan salah satu himpunan penyelesaian dari
pertidaksamaan tersebut sehingga diperoleh
5x + 15y = 4200 disederhanakan menjadi
5x + 15y ≤ 4200
•Persamaan garis 2 : x + y = 60
Titik (0,0) merupakan salah satu himpunan penyelesaian dari
pertidaksamaan tersebut sehingga diperoleh
x + y = 60 disederhanakan menjadi
x + y ≤ 60
•Kendala non negative diberikan oleh
X ≥ 0, y ≥ 0
•Jadi model matematika nya
5x + 15y ≤ 4200; 4x + y ≤ 60 ; x ≥ 0, y ≥ 0
Jawaban: 5x + 15y ≤ 4200; 4x + y ≤ 60 ; x ≥ 0, y ≥ 0
Nomor 16.
diket :
- Model I memerlukan 1 m kain polos dan 3 m kain bergaris.
- Model II memerlukan 2 m kain polos dan 1 m kain bergaris.
- Persediaan kain polos 20 m
- persediaan kain bergaris 20 m
- Harga jual model I Rp.150.000,00
- Harga jual model II Rp.100.000,00
Dit : Penghasilan maksimum yang dapat diperoleh = ...
Jwb :
(1) Kita Buat Tabel Untuk memudahkan:
Model || Polos || Garis || Harga
I || 1 || 3 || 150.000
II || 2 || 1 || 100.000
Stok || 20 || 20 || maksimum
(2) Kita buat kalimat matematika dari Tabel diatas Dengan kain polos sebagai (x) dan kain bergaris sebagai (y) :
x + 2y ≤ 20
3x + y ≤ 20
dengan :
x ≥ 0
y ≥ 0
Dan Fungsi Tujuan adalah harga jual :
150.000x + 100.000y
(3) Tentukan nilai fungsi x dan y pada grafik fungsi :
Dari x + 2y = 20 :
x = 0, y ⇒ 0 + 2y = 20
⇒ 2y = 20
⇒ y = 20/2
⇒ y = 10
Titik Koordinat ⇒ (0,10)
y = 0, x ⇒ x + 2y = 20
⇒ x + 0 = 20
⇒ x = 20
Titik Koordinat ⇒(20,0)
Dari 3x + y = 20
x = 0 , y ⇒ 3x + y = 20
⇒ 0 + y = 20
Titik Koordinat ⇒ (0,20)
y = 0, x ⇒ 3x + y = 20
⇒ 3x + 0 = 20
⇒ 3x = 20
⇒ x = 20/3
Titik Koordinat ⇒ (20/3,0)
Dari Titik - titik tersebut tarik garis lurus hingga terhubung.
Lalu kita cari titik potong dari garis tersebut, dengan metode eliminasi dan subtitusi :
Eliminasi y :
x + 2y = 20 | x 1 | x + 2y = 20
3x + y = 20 | x 2 | 6x + 2y = 40
============ -
-5x = -20
x = 20/5
x = 4
Subtitusikan nilai x pada persamaan 3x + y = 20 :
3 . 4 + y = 20
12 + y = 20
y = 20 - 12
y = 8
Koordinat titik potong garis pada (4,8)
(4) Selanjutnya Dari Titik - titik yang berpotongan kita uji dengan :
Fungsi Tujuan f(x,y) = 150.000x + 100.000y :
Ada 3 titik pada Grafik (perhatikan lampiran)
A. Titik (0,10) = 150.000 . (0) + 100.000 . (10) =
= 0 + 1.000.000 = 1.000.000
B. Titik (4,8) = 150.000 . (4) + 100.000 . (8) =
= 600.000 + 800.000 = 1.400.000
C. Titik (20/3,0) = 150.000 . (20/3) + 100.000 . (0) =
= 1.000.000 + 0 = 1.000.000
Dari Hasil Uji diatas dapat dilihat, penghasilan terbesar pada titik (4,8) yaitu sebesar Rp.1.400.000,00
Nomor 17.
Diketahui matriks A = ( 2 3 -1 4 ) dan matriks B = ( 1 4 -2 5 ). Jika matriks C = 2A^t - B maka determinan dari matriks C adalah....
Jika diketahui matriks , , dan ,maka determinan dari matriks C adalah 57.
Pembahasan
Matriks adalah susunan beberapa bilangan dalam bentuk persegi panjang yang diatur menurut baris dan kolom.
Ordo matriks adalah ukuran dari suatu matriks yang ditentukan oleh banyaknya baris dan kolom dari suatu matriks. Misalkan matriks A mempunyai m baris dan n kolom, maka ordo matriks A adalah m x n.
Transpos matriks adalah mengubah baris matriks A menjadi kolom matriks sehingga matriks A dengan ordo m x n akan menjadi matriks transpos A' dengan ordo n x m.
Determinan matriks A dilambangkan dengan det A atau |A|. Untuk menentukan determinan matriks dapat digunakan sebagai berikut.
1. Matriks berordo 2 x 2
Jika matriks , maka
det A = |A| =
2. Matriks berordo 3 x 3
Jika matriks
, maka
determinan A dapat ditentukan dengan menggunakan aturan Sarrus:
= a₁₁ a₂₂ a₃₃ + a₁₂ a₂₃ a₃₁ + a₁₃ a₂₁ a₃₂ - a₁₃ a₂₂ a₃₁ - a₁₁ a₂₃ a₃₂ - a₁₂ a₂₁ a₃₃
Penyelesaian
diket:
ditanya:
det C...?
jawab:
- mencari transpos matrisk A
⇒
- mencari matriks C
- mencari det C
det C = (3)(3) - (-6)(8)
= 9 + 48
det C = 57
Nomor 18.
Det(AtB) = (10.34) – (12.12) = 340 – 144 = 196
Nomor 19.
Diketahui
A =
Matriks A tidak mempunyai invers
Ditanyakan
x = .... ?
Jawab
Suatu matriks tidak mempunyai invers jika determinan matriks tersebut sama dengan nol
|A| = 0
(2x + 1)(5) – 3(6x – 1) = 0
10x + 5 – 18x + 3 = 0
8 – 8x = 0
8 = 8x
x =
x = 1
Nomor 20.
Nomor 21.
Nomor 22.
Suatu
perusahaan pakaian, JCloth, memiliki dua pabrik yang terletak di
Surabaya dan Malang. Di dua pabrik tersebut, JCloth memproduksi dua
jenis pakaian, yaitu kaos dan jaket. Perusahaan tersebut memproduksi
pakaian yang kualitasnya dapat dibedakan menjadi tiga jenis, yaitu
standard, deluxe, dan premium. Tahun kemarin, pabrik di Surabaya dapat
memproduksi kaos sebanyak 3.820 kualitas standard, 2.460 kualitas
deluxe, dan 1.540 kualitas premium, serta jaket sebanyak 1.960 kualitas
standard, 1.240 kualitas deluxe, dan 920 kualitas premium. Sedangkan
pabrik yang terletak di Malang dapat memproduksi kaos sebanyak 4.220
kualitas standard, 2.960 kualitas deluxe, dan 1.640 kualitas premium,
serta jaket sebanyak 2.960 kualitas standard, 3.240 kualitas deluxe, dan
820 kualitas premium dalam periode yang sama.
Untuk menentukan banyaknya total pakaian yang diproduksi oleh JCloth, kita jumlahkan matriks S’ dengan M’ seperti berikut.
Dari
penjumlahan matriks di atas, kita memperoleh informasi banyaknya
pakaian yang akan diproduksi oleh JCloth. Dengan menjumlahkan semua
elemen-elemen matriks penjumlahan tersebut, kita peroleh bahwa banyaknya
pakaian yang akan diproduksi oleh JCloth kurang lebih 28.142.
Dari penjumlahan matriks di atas, kita memperoleh informasi banyaknya pakaian yang akan diproduksi oleh JCloth. Dengan menjumlahkan semua elemen-elemen matriks penjumlahan tersebut, kita peroleh bahwa banyaknya pakaian yang akan diproduksi oleh JCloth kurang lebih 28.142.
Nomor 23.
pensil (x) dan penghapus (y)Maka:
5x + 3y = 11.500 | x2 | 10x + 6y = 23000
4x + 2y = 9000 | x3 | 12x + 6y = 27000
——————-—-
-2x = -4000
x = 2000
5x + 3y = 11500
5(2000) + 3y = 11500
10000+ 3y = 11500
3y = 1500
y = 500
6(2000) + 5(500)
12000 + 2500
=14.500
Nomor 24.
Bu
Ani seorang pengusaha makanan kecil yang menyetorkan dagangannya ke
tiga kantin sekolah. Tabel banyaknya makanan yang disetorkan setiap
harinya sebagai berikut. Kacang Keripik Permen Kantin A | 10 | 10 | 5 |
Kantin B | 20 | 15 | 8 | Kantin C | 15 | 20 | 10 | (Dalam satuan
bungkus) Harga sebungkus kacang, sebungkus keripik, dan sebungkus permen
berturut-turut adalah Rp 2.000,00; Rp 3.000,00; dan Rp 1.000,00.Hitung
pemasukan Bu Ani dari setiap kantin dengan cara perkalian matrik
Hitung pemasukan Bu Ani dari setiap kantin dengan cara perkalian matriks
Perkalian Matriks A dan Matriks B
AB =
AB =
Kantin A: Rp. 55.000,00
Kantin B: Rp. 93.000,00
Kantin C: Rp. 100.000,00
Nomor 25.
Lisa
dan muri bekerja pada pabrik tas. Lisa dapar menyelesaikan 3 buah
setiap jam dan muri dapat menyelesaikan 4 tas setiap jam jumlah jam
kerja lisa dan muri adalah 16 jam sehari dengan jumlah tas yang dibuat
oleh keduanya adalah 55 tas. Jika jam kerja keduanya berbeda, lisa
bekerja selama x jam dan muri bekerja selama y jam, maka model
matematika penyrlrsaian masalah tersebut menggunakan matriks adalah
Pembahasan:
x + y = 16
3x + 4y = 55
Jika ditulis dalam bentuk matriks:
Jadi, Lisa bekerja selama 9 jam sedangkan Muri bekerja selama 7 jam.
x + y = 16
3x + 4y = 55
Jika ditulis dalam bentuk matriks:
Jadi, Lisa bekerja selama 9 jam sedangkan Muri bekerja selama 7 jam.
Nomor 26.
Transformasi geometri ↓
1. Translasi (pergeseran)
Translasi adalah perubahan objek dengan cara menggeser objek dari satu posisi ke posisi lainnya dengan jarak tertentu.
2. Refleksi (pencerminan)
3. Rotasi (perputaran)
Rotasi atau perputaran adalah sebuah perubahan kedudukan objek dengan cara diputar melalui pusat dan sudut tertentu.
4. Dilatasi (perbesaran)
- Pelajari Lebih Lanjut → Berdasarkan gambar, tentukan translasi T yang menggeser masing masing objek tersebut
Refleksi merupakan salah satu bagian dari transformasi geometri, dimana benda yang kita refleksikan akan berlawanan arah dengan benda aslinya.
Pencerminan terhadap sumbu x
A(a, b) → sb x → A'(a, -b)
Pencerminan terhadap sumbu y
A(a, b) → sb y → A'(-a, b)
Pencerminan terhadap garis y = x
A(a, b) → gr y = x → A'(b, a)
Pencerminan terhadap garis y = -x
A(a, b) → gr y = -x → A'(-b, -a)
Pencermianan terhadap titik pangkal koordinat
A(a, b) → titik pangkal → A'(-a, -b)
Pencerminan terhadap garis x = h
A(a, b) → garis x = h → A' (2h - a, b)
Pencerminan terhadap garis y = k
A(a, b) → garis y = k → A'(a, 2k - b)
- Pelajari Lebih Lanjut → Bayangan titik A(4, 6) karena refleksi terhadap garis y = 2, yang kemidian di lanjutkan dengan refleksi terhadap garis x = -1 adalah
Penyelesaian Soal
Bayangan titik A (-1, 4) oleh refleksi terhadap garis y= -x
Pencerminan terhadap garis y = -x
A(a, b) → gr y = -x → A'(-b, -a)
A(-1, 4) → gr y = -x → A'(-4, -(-1)) = (-4, 1)
Nomor 27.
(x, y) dicerminkan thp sumbu x : (x, -y) kemudian
Nomor 28,
Matriks rotasi 90° berlawanan jarum jam di pusat (0,0) adalah:
Menghasilkan komposisi transformasi:
Memberikan:
Yang mana:
x = -x'
y = y'
Substitusi ke persamaan yang akan menghasilkan:
Nomor 29.
Kita siapkan variabel-variabel x dan y sebagai variabel awal, x' dan y' sebagai variabel bayangan setelah pencerminan garis, dan x" serta y" sebagai variabel bayangan setelah translasi.
Step-1 pencerminan garis x = k
Untuk x = 2
(x' , y') = (2(2) - x, y)
(x' , y') = (4 - x, y) akan disubtitusi ke Step-2
Step-2 translasi (- 3, 4)
Translasi (a, b) dengan a = -3 dan b = 4.
(x", y") = (x' + (- 3), y' + 4)
(x", y") = (4 - x + (- 3), y + 4)
(x", y") = (1 - x, y + 4)
Sehingga, x" = 1 - x dan y" = y + 4
Setelah diatur dengan pindah ruas menjadi
Substitusikan ke bentuk awal x²+ y² = 4
⇔ (1 - x")² + (y" - 4)² = 4
Selanjutnya tanda aksen dapat dihilangkan
⇔ (1 - x)² + (y - 4)² = 4
⇔ x² - 2x + 1 + y² - 8y + 16 = 4
⇔ x² + y² - 2x - 8y + 1 + 16 - 4 = 0
Kesimpulan
Dari langkah-langkah pengerjaan di atas, diperoleh persamaan bayangan lingkaran
Nomor 30.
x' = x + 1 = 3 + 1 = 4
y' = y + (-2) = -2 + (-2) = -4
Bayangan A = A' = (4,-4)
lanjut rotasi [O , 90°]
x" = -y' = -(-4) = 4
y" = x' = 4
Bayangan akhir = A" = (4,4)
Nomor 31.
Nomor 32.
• refleksi thd sb x
x' = x
y' = -y
Bayangan
y = x² + 3x + 3
-y' = x'² + 3x' + 3
y = -x² - 3x - 3
• lanjut dilatasi [O, 4]
x' = 4x → x = 1/4 x'
y' = 4y → y = 1/4 y'
Bayangan akhir
y = -x² - 3x - 3
1/4 y' = -(1/4 x')² - 3(1/4 x') - 3
1/4 y = -1/16 x² - 3/4 x - 3
Kedua ruas kalikan 4
y = -1/4 x² - 3x - 12 ✔
Nomor 33.
Nomor 34.
Nomor 35.
Nomor 36.
U1,U2,U3,...
50.000, 55.000, 60.000,....
maka
a=50.000
b=5.000(beda per bulan)
yg ditanyakan=jumlah tabungan dlm 2 tahun, maka jumlah tabungan dalam 24 bulan
maka
Sn=n/2(a+Un)
cari Un dulu
Un=a+(n-1)b
U24 =50.000+(24-1)5.000
U24=50.000+23x5.000
U24=50.000 + 115.000
U24=165.000
lalu
Sn=n/2(a+Un)
S24=24/2(50.000+165.000)
S24=12(215.000)
S24=2.580.000
Tidak ada komentar:
Posting Komentar