Minggu, 22 November 2020

JAWABAN PAS MATEMATIKA

JAWABAN PAS MATEMATIKA KELAS XI SEMESTER I

Nomer 1. 

Diketahui premis-premis berikut :

Premis 1 =  Jika masyarakat membuang sampah pada tempatnya maka lingkungan bersih

Premis 2 = Jika lingkungan bersih maka hidup akan nyaman

simpulan yang sah dari kedua premis tersebut adalah 

Jika masyarakat membuang sampah pada tempatnya maka hidup akan jadi nyaman

 

Nomer 2.

2.Buktikan bahwa : 1+3+5+...+ (2n-1) =n2

angkah induksi

1) n = 1

2) n = k

3) n = k + 1

1 + 3 +  5 +  . . .  + (2n - 1 ) = n²

i) n = 1

2(1)  - 1 = 1²

2 - 1 = 1

1 = 1  (benar)

ii) n = k  

1 + 3 + 5 + . . . + (2k - 1) = k²  

iii) 1 + 3 + 5 + . . . + (2k - 1) +  {2(k +1) -1 } = (k+1)²

k² +  2k + 2 - 1 =  k² + 2k  + 1

k² + 2k + 1  =  k² + 2k + 1

 

Nomor 3.

 

 
 
 

Nomor 4. 

 

 Nomor 5.

 

Nomor 6.

6.Buktikan dengan induksi matematika bahwa : 5^2n + 3n - 1 habis dibagi 9

1) buktikan kebenaran untuk n=1

5^{2} + 3 - 1 = 27

(Benar)

2) asumsikan benar untuk n=k

5^{2k} + 3k - 1 = 9m , m \in \mathbb{N}

9m menunjukkan bahwa 5^{2k} + 3n - 1 merupakan kelipatan 9)

3) cek kebenaran untuk n=k+1

5^{2(k+1)} + 3(k+1) - 1\\= 5^{2k}5^2 + 3k + 3 - 1\\= 25\cdot5^{2k} + 3k - 1 + 3\\= 24\cdot5^{2k} + 5^{2k}+ 3k - 1 + 3\\= 5^{2k}+ 3k - 1 + 3 + 24\cdot5^{2k}\\= 9m + 3 + 24\cdot 5^{2k}

akan terbukti benar jika 3 + 24\cdot 5^{2k} habis dibagi 9

bisa buktikan itu dengan induksi lagi

buktikan bahwa 3 + 24\cdot 5^{2n} habis dibagi 9

1) cek kebenaran untuk n = 1

3 + 24\cdot 5^{2} = 603

(benar)

2) asumsikan benar untuk n=k

3 + 24\cdot 5^{2k} = 9m

3) cek kebenaran untuk n=k+1

3 + 24\cdot 5^{2(k+1)} \\= 3 + 24\cdot25\cdot5^{2k}\\= 3 + 24\cdot5^2k + 24\cdot24\cdot 5^{2k}\\= 9m + 3\cdot8\cdot3\cdot8\cdot 5^{2k}\\= 9m + 9\cdot64\cdot5^{2k}\\= 9( m + 64\cdot5^{2k})

terbukti bahwa 3 + 24\cdot 5^{2n} habis dibagi 9 benar

maka pernyataan awal tadi juga benar

 

Nomor 7. 

Buktikan untuk masing masing bilangan asli n _> 5 akan berlaku 2n-3<2n-2


maaf kalau salag


Penjelasan dengan langkah-langkah:


n_>5={1,2,3,4,5}


2n-3<2n-2


=2(1)-3<2(1)-2


=(-1)<0(benar)


2(2) -3<2(2) -2


=1<2 (benar)


2(3) -3<2(3) -2


=3<4(benar)


2(4) -3<2(4) -2


=5<6( benar)


2(5) -3<2(5) -2


=7<8( benar)


Nomor 8.

penyelesaian dari sistem persamaan 2x-3y=-13 dan x+2y=4 adalah?


persamaan x+2y=4 kita kalikan dengan 2, maka menjadi

2x+4y = 8 -------> (persamaan 1)

2x-3y = -13 ------> (persamaan 2)

--------------- - (dikurangi)

     7y = 21

y = 21/7

y = 3


nilai y = 3 kita masukkan kdlam salah satu persamaan di atas, misalkan pada

persamaan x+2y = 4,

x+2.3 = 4

x+6 = 4

x = 4-6

x = -2


jadi penyelesainnya adlh x= -2 dan y = 3


Nomor 9.

Harga 5 kg gula dan 30 kg beras adalah Rp410.000,00, sedangkan harga 2 kg gula dan 60 kg beras adalah Rp740.000,00. Harga 2 kg gula dan 5 kg beras adalah


gula = x

beras = y

5x + 30y = 410.000 |*2

2x + 60y = 740.000 |*1


10x + 60y = 820.000

2x + 60y = 740.000 

_________________-


8x = 80.000

x = 10.000


subtitusikan x nya ke persamaan

 2x + 60y = 740.000

2(10.000) + 60y = 740.000

20.000 + 60y = 740.000

60y = 720.000

y = 12.000


jadi, harga 1kg gula = Rp 10.000 dan 1kg beras = Rp 12.000

maka 2kg gula dan 5kg beras

= 2(10.000) + 5(12.000)

= 20.000 + 60.000

= Rp 80.000

 

Nomor 10. 

Tentukan daerah bersih dari pertidaksamaan linear berikut 5x+3y <15


Untuk x = 0


5x + 3y = 15


5 (0) + 3y = 15


          3y = 15


            y = 


            y = 5 titik (0, 5)


Untuk y = 0


5x + 3y = 15


5x + 3 (0) = 15


          5x = 15


            x = 


            x = 3 titik (3, 0)


Jadi garis 5x + 3y = 15 melalui titik (0, 5) dan (3, 0)


Nomor 11.

Tentukan daerah kotor dari pertidaksamaan linear berikut 2x-5y > 20

 

Penjelasan dengan langkah-langkah:

2x-5y>20

titik potong di y

x=0

2(0)-5y>20

-5y>20

y<20/-5

y<-4

Hp { 0,-4}


titik potong di x

y=0

2x-5(0)>20

2x>20

x>20/2

x>10

Hp {10,0}

Hp{ 10,0 ; 0.-4}


Nomor 12.

5x + 6y ≥ 30 (0,5) (6,0) *karena a positif dan tanda ≥ maka daerahnya berada di kanan garis


2x + y  ≤ 0 (0,0) (0,0) *karena a negatif dan tanda ≤ maka daerahnya berada di kanan garis 


Y ≥ 2 *daerah berada pada rentang y ≥ 2, y € r

Maka daerah penyelesaian dari model mtk tsb berada di daerah III

 

Nomor 13.

Daerah yang diarsir pada gambar adalah himpunan penyelesaian dari sistem pertidaksamaan 3x + 5y ≤ 30 ; 2x - y ≤ 4 ; x ≥ 0 dan y ≥ 0.

Penyelesaian Soal :

LANGKAH PERTAMA (I)

Buatlah sistem pertidaksamaan pada setiap garis dengan menggunakan cara sebagai berikut :

Persamaan garis I melalui titik (0,6) dan (10,0) sehingga :

ax + by = ab

6x + 10y = 6.10

6x + 10y = 60     .... (÷2)

3x + 5y = 30

Kemudian perhatikan daerah arsiran yang mengarah ke bawah atau melalui titik (0,0). Jika arsiran melalui titik (0,0) maka jika diuji titik (0,0)  pernyataan dikatakan benar :

3x + 5y = 30

3.0 + 5.0 = 30

0 + 0 = 30

0 ≤ 30  (Benar)

Pertidaksamaannya : 3x + 5y ≤ 30

Persamaan garis II melalui titik (0,-4) dan (2,0) sehingga :

ax + by = ab

-4x + 2y = (-4).2

-4x + 2y = -8     .... (÷ 2)

-2x + y = -4

Kemudian perhatikan daerah arsiran yang mengarah ke sisi kiri atau melalui titik (0,0). Jika arsiran melalui titik (0,0) maka jika diuji titik (0,0)  pernyataan dikatakan benar :

-2x + y = -4

(-2).0 + 0 = -4

0 + 0 = -4

0 ≥ -4  (Benar)

Pertidaksamaannya :

-2x + y ≥ -4    .... (× -1)

2x - y ≤ 4

Kemudian pada arsiran juga terdapat garis x ≥ 0 dan y ≥ 0.

Sehingga pertidaksamaannya adalah :

3x + 5y ≤ 30 ; 2x - y ≤ 4 ; x ≥ 0 dan y ≥ 0.



Nomor 14.

Nilai Maksimum 3x + 2y ?

x + y > 5

sumbu x ; y = 0 ( 5, 0)

sumbu y ; x = 0 ( 0, 5)


maka Nilai Maksimumnya adalah

3x + 2y

( 5, 0) = 3(5) + 2(0) = 15

(0, 5) = 3(0) + 2(5) = 10

Nilai maksimum nya adalah 15

 

Nomor 15.

Diketahui=

X = banyaknya sedan

Y = banyaknya truk


Luas Parkiran:

sedan= 15

Truk = 15

Kapasitas 420


Kuantitas:

sedan= 1

Truk = 1

Kapasitas 60


Jawab:

•Persamaan garis 1 : 5x + 15y = 4200

Titik (0,0) merupakan salah satu himpunan penyelesaian dari

pertidaksamaan tersebut sehingga diperoleh

5x + 15y = 4200 disederhanakan menjadi

5x + 15y ≤ 4200


•Persamaan garis 2 : x + y = 60

Titik (0,0) merupakan salah satu himpunan penyelesaian dari

pertidaksamaan tersebut sehingga diperoleh

x + y = 60 disederhanakan menjadi

x + y ≤ 60


•Kendala non negative diberikan oleh

X ≥ 0, y ≥ 0


•Jadi model matematika nya

5x + 15y ≤ 4200; 4x + y  ≤ 60 ; x  ≥ 0, y  ≥ 0


Jawaban: 5x + 15y ≤ 4200; 4x + y  ≤ 60 ; x  ≥ 0, y  ≥ 0



Nomor 16.

diket :

- Model I memerlukan 1 m kain polos dan 3 m kain bergaris.

- Model II memerlukan 2 m kain polos dan 1 m kain bergaris.

- Persediaan kain polos 20 m

- persediaan kain bergaris 20 m

- Harga jual model I Rp.150.000,00

- Harga jual model II Rp.100.000,00


Dit : Penghasilan maksimum yang dapat diperoleh  = ...


Jwb : 

(1) Kita Buat Tabel Untuk memudahkan:

Model   ||    Polos  ||  Garis  ||  Harga

   I         ||       1       ||     3      ||  150.000

  II         ||       2      ||      1      ||  100.000

Stok      ||       20    ||      20   ||   maksimum


(2) Kita buat kalimat matematika dari Tabel diatas Dengan kain polos sebagai (x) dan kain bergaris sebagai (y) :

x + 2y ≤ 20

3x + y ≤ 20

dengan :

x ≥ 0

y ≥ 0

Dan Fungsi Tujuan adalah harga jual :

150.000x + 100.000y


(3) Tentukan nilai fungsi x dan y pada grafik fungsi :

Dari x + 2y = 20 :

x = 0, y ⇒ 0 + 2y = 20

            ⇒       2y = 20

            ⇒          y = 20/2

            ⇒          y = 10

Titik Koordinat ⇒ (0,10)

y = 0, x ⇒ x + 2y = 20

            ⇒ x  + 0  = 20

            ⇒         x  = 20

Titik Koordinat ⇒(20,0)


Dari 3x + y = 20

x = 0 , y ⇒ 3x + y = 20

             ⇒ 0   + y = 20

Titik Koordinat ⇒ (0,20)

y = 0, x ⇒ 3x + y = 20

            ⇒ 3x + 0 = 20

            ⇒ 3x        = 20

            ⇒   x        = 20/3

Titik Koordinat ⇒ (20/3,0)


Dari Titik - titik tersebut tarik garis lurus hingga terhubung.

Lalu kita cari titik potong dari garis tersebut, dengan metode eliminasi dan subtitusi :

Eliminasi y :

x + 2y = 20  | x 1  |   x + 2y = 20

3x + y = 20  | x 2 | 6x + 2y = 40

                            ============  -

                             -5x          = -20

                                x           = 20/5

                                x           = 4

Subtitusikan nilai x pada persamaan 3x + y = 20 :

3 . 4 + y = 20

12 + y = 20

       y = 20 - 12

       y = 8

Koordinat titik potong garis pada (4,8)


(4) Selanjutnya Dari Titik - titik yang berpotongan kita uji dengan :

Fungsi Tujuan f(x,y) = 150.000x + 100.000y :

Ada 3 titik pada Grafik (perhatikan lampiran)

A. Titik (0,10) = 150.000 . (0) + 100.000 . (10) =

                      = 0 + 1.000.000 = 1.000.000

B. Titik (4,8) = 150.000 . (4) + 100.000 . (8) =

                      = 600.000 + 800.000 = 1.400.000

C. Titik (20/3,0) = 150.000 . (20/3) + 100.000 . (0) =

                        = 1.000.000 + 0 = 1.000.000


Dari Hasil Uji diatas dapat dilihat, penghasilan terbesar pada titik (4,8) yaitu sebesar Rp.1.400.000,00


Nomor 17.

Diketahui matriks A = ( 2 3 -1 4 ) dan matriks B = ( 1 4 -2 5 ). Jika matriks C = 2A^t - B maka determinan dari matriks C adalah....

Jika diketahui matriks   ,  , dan  ,maka determinan dari matriks C adalah 57.

Pembahasan

Matriks adalah susunan beberapa bilangan dalam bentuk persegi panjang yang diatur menurut baris dan kolom.

Ordo matriks adalah ukuran dari suatu matriks yang ditentukan oleh banyaknya baris dan kolom dari suatu matriks. Misalkan matriks A mempunyai m baris dan n kolom, maka ordo matriks A adalah m x n.

Transpos matriks adalah mengubah baris matriks A menjadi kolom matriks sehingga matriks A dengan ordo m x n akan menjadi matriks transpos A' dengan ordo n x m.

Determinan matriks A dilambangkan dengan det A atau |A|.  Untuk menentukan determinan matriks dapat digunakan sebagai berikut.

1. Matriks berordo 2 x 2

  Jika matriks  , maka

  det A = |A| =  

2.  Matriks berordo 3 x 3

    Jika matriks

    , maka

    determinan A dapat ditentukan dengan menggunakan aturan Sarrus:

    

         = a₁₁ a₂₂ a₃₃ + a₁₂ a₂₃ a₃₁ + a₁₃ a₂₁ a₃₂ - a₁₃ a₂₂ a₃₁ - a₁₁ a₂₃ a₃₂ - a₁₂ a₂₁ a₃₃



Penyelesaian

diket:

        

ditanya:

det C...?

jawab:

- mencari transpos matrisk A

   ⇒ 

- mencari matriks C

 

     

     

- mencari det C

 det C = (3)(3) - (-6)(8)

          = 9 + 48

det C = 57


Nomor 18.


 
Det(AtB) = (10.34) – (12.12) = 340 – 144 = 196


Nomor 19.

  Diketahui

A = 

Matriks A tidak mempunyai invers

Ditanyakan  

x = .... ?

Jawab

Suatu matriks tidak mempunyai invers jika determinan matriks tersebut sama dengan nol


|A| = 0

(2x + 1)(5) – 3(6x – 1) = 0

10x + 5 – 18x + 3 = 0

8 – 8x = 0

8 = 8x

x = 

x = 1

 

Nomor 20.

 

 

Nomor 21.

 

 

Nomor 22.

Suatu perusahaan pakaian, JCloth, memiliki dua pabrik yang terletak di Surabaya dan Malang. Di dua pabrik tersebut, JCloth memproduksi dua jenis pakaian, yaitu kaos dan jaket. Perusahaan tersebut memproduksi pakaian yang kualitasnya dapat dibedakan menjadi tiga jenis, yaitu standard, deluxe, dan premium. Tahun kemarin, pabrik di Surabaya dapat memproduksi kaos sebanyak 3.820 kualitas standard, 2.460 kualitas deluxe, dan 1.540 kualitas premium, serta jaket sebanyak 1.960 kualitas standard, 1.240 kualitas deluxe, dan 920 kualitas premium. Sedangkan pabrik yang terletak di Malang dapat memproduksi kaos sebanyak 4.220 kualitas standard, 2.960 kualitas deluxe, dan 1.640 kualitas premium, serta jaket sebanyak 2.960 kualitas standard, 3.240 kualitas deluxe, dan 820 kualitas premium dalam periode yang sama.

Untuk menentukan banyaknya total pakaian yang diproduksi oleh JCloth, kita jumlahkan matriks S’ dengan M’ seperti berikut.
  1. 1-4 Matriks
    Dari penjumlahan matriks di atas, kita memperoleh informasi banyaknya pakaian yang akan diproduksi oleh JCloth. Dengan menjumlahkan semua elemen-elemen matriks penjumlahan tersebut, kita peroleh bahwa banyaknya pakaian yang akan diproduksi oleh JCloth kurang lebih 28.142.

 

Nomor 23.

 pensil (x) dan penghapus (y)Maka:
5x + 3y = 11.500 | x2 | 10x + 6y = 23000
4x + 2y = 9000 | x3 | 12x + 6y = 27000
——————-—-
-2x = -4000
x = 2000

5x + 3y = 11500
5(2000) + 3y = 11500
10000+ 3y = 11500
3y = 1500
y = 500

6(2000) + 5(500)
12000 + 2500
=14.500

 

Nomor 24.

Bu Ani seorang pengusaha makanan kecil yang menyetorkan dagangannya ke tiga kantin sekolah. Tabel banyaknya makanan yang disetorkan setiap harinya sebagai berikut. Kacang Keripik Permen Kantin A | 10 | 10 | 5 | Kantin B | 20 | 15 | 8 | Kantin C | 15 | 20 | 10 | (Dalam satuan bungkus) Harga sebungkus kacang, sebungkus keripik, dan sebungkus permen berturut-turut adalah Rp 2.000,00; Rp 3.000,00; dan Rp 1.000,00.Hitung pemasukan Bu Ani dari setiap kantin dengan cara perkalian matrik

Hitung pemasukan Bu Ani dari setiap kantin dengan cara perkalian matriks

Perkalian Matriks A dan Matriks B

AB = 

AB = 

Kantin A: Rp. 55.000,00

Kantin B: Rp. 93.000,00

Kantin C: Rp. 100.000,00

 

Nomor 25.

Lisa dan muri bekerja pada pabrik tas. Lisa dapar menyelesaikan 3 buah setiap jam dan muri dapat menyelesaikan 4 tas setiap jam jumlah jam kerja lisa dan muri adalah 16 jam sehari dengan jumlah tas yang dibuat oleh keduanya adalah 55 tas. Jika jam kerja keduanya berbeda, lisa bekerja selama x jam dan muri bekerja selama y jam, maka model matematika penyrlrsaian masalah tersebut menggunakan matriks adalah

Pembahasan:

x + y = 16
3x + 4y = 55

Jika ditulis dalam bentuk matriks:





Jadi, Lisa bekerja selama 9 jam sedangkan Muri bekerja selama 7 jam.

 

Nomor 26.

 Transformasi geometri ↓

1. Translasi (pergeseran)

Translasi adalah perubahan objek dengan cara menggeser objek dari satu posisi ke posisi lainnya dengan jarak tertentu.

2. Refleksi (pencerminan)

3. Rotasi (perputaran)

Rotasi atau perputaran adalah sebuah perubahan kedudukan objek dengan cara diputar melalui pusat dan sudut tertentu.

4. Dilatasi (perbesaran)

  •    Pelajari Lebih Lanjut → Berdasarkan gambar, tentukan translasi T yang menggeser masing masing objek tersebut

Refleksi merupakan salah satu bagian dari transformasi geometri, dimana benda yang kita refleksikan akan berlawanan arah dengan benda aslinya.

Pencerminan terhadap sumbu x

A(a, b) → sb x → A'(a, -b)

Pencerminan terhadap sumbu y

A(a, b) → sb y → A'(-a, b)

Pencerminan terhadap garis y = x

A(a, b) → gr y = x →  A'(b, a)

Pencerminan terhadap garis y = -x

A(a, b)  → gr y = -x → A'(-b, -a)

Pencermianan terhadap titik pangkal koordinat

A(a, b)  → titik pangkal →  A'(-a, -b)

Pencerminan terhadap garis x = h

A(a, b) → garis x = h → A' (2h - a, b)

Pencerminan terhadap garis y = k

A(a, b) → garis y = k → A'(a, 2k - b)

  •    Pelajari Lebih Lanjut → Bayangan titik A(4, 6) karena refleksi terhadap garis y = 2, yang kemidian di lanjutkan dengan refleksi terhadap garis x = -1 adalah 

Penyelesaian Soal

Bayangan titik A (-1, 4) oleh refleksi terhadap garis y= -x

Pencerminan terhadap garis y = -x

A(a, b)  → gr y = -x → A'(-b, -a)

A(-1, 4) → gr y = -x → A'(-4, -(-1)) = (-4, 1)

 

Nomor 27.

 (x, y) dicerminkan thp sumbu x : (x, -y) kemudian

(x, -y) dicerminkan thp sumbu y : (-x, -y)

Jadi

-x = x' => x = -x'
-y = y' => y = -y'

Bayangan dari : y = 3x² + 2x - 1 adalah
(-y') = 3(-x')² + 2(-x') - 1
-y' = 3x'² - 2x' - 1
y = -3x² + 2x + 1

 

Nomor 28,

 Matriks refleksi y = x adalah:

Matriks rotasi 90° berlawanan jarum jam di pusat (0,0) adalah:


Menghasilkan komposisi transformasi:


Memberikan:


Yang mana:
x = -x'
y = y'

Substitusi ke persamaan yang akan menghasilkan:


Nomor 29.

 Kita  siapkan variabel-variabel x dan y sebagai variabel awal, x' dan y' sebagai variabel bayangan setelah pencerminan garis, dan x" serta y" sebagai variabel bayangan setelah translasi.

Step-1 pencerminan garis x = k

Untuk x = 2

(x' , y') = (2(2) - x, y)

(x' , y') = (4 - x, y) akan disubtitusi ke Step-2

Step-2 translasi (- 3, 4)

Translasi (a, b) dengan a = -3 dan b = 4.

(x", y") = (x' + (- 3), y' + 4)

(x", y") = (4 - x + (- 3), y + 4)

(x", y") = (1 - x, y + 4)

Sehingga, x" = 1 - x dan y" = y + 4

Setelah diatur dengan pindah ruas menjadi 

Substitusikan ke bentuk awal x²+ y² = 4

⇔ (1 - x")² + (y" - 4)² = 4

Selanjutnya tanda aksen dapat dihilangkan

⇔ (1 - x)² + (y - 4)² = 4  

⇔ x² - 2x + 1 + y² - 8y + 16 = 4

⇔ x² + y² - 2x - 8y + 1 + 16 - 4 = 0

Kesimpulan

Dari langkah-langkah pengerjaan di atas, diperoleh persamaan bayangan lingkaran 



Nomor 30.

 A(3,-2)dipetakan oleh T(1 -2)

x' = x + 1 = 3 + 1 = 4
y' = y + (-2) = -2 + (-2) = -4

Bayangan A = A' = (4,-4)

lanjut rotasi [O , 90°]

x" = -y' = -(-4) = 4
y" = x' = 4

Bayangan akhir = A" = (4,4)

 

Nomor 31.

 

 

Nomor 32.

• refleksi thd sb x

x' = x

y' = -y

Bayangan

y = x² + 3x + 3

-y' = x'² + 3x' + 3

y = -x² - 3x - 3

• lanjut dilatasi [O, 4]

x' = 4x → x = 1/4 x'

y' = 4y → y = 1/4 y'

Bayangan akhir

y = -x² - 3x - 3

1/4 y' = -(1/4 x')² - 3(1/4 x') - 3

1/4 y = -1/16 x² - 3/4 x - 3

Kedua ruas kalikan 4

y = -1/4 x² - 3x - 12 ✔

 

Nomor 33.

 

 

Nomor 34.

 

 

Nomor 35.

 

 

Nomor 36.

 maka
U1,U2,U3,...
50.000, 55.000, 60.000,....
maka 
a=50.000
b=5.000(beda per bulan)
yg ditanyakan=jumlah tabungan dlm 2 tahun, maka jumlah tabungan dalam 24 bulan
maka
Sn=n/2(a+Un)
cari Un dulu
Un=a+(n-1)b
U24 =50.000+(24-1)5.000
U24=50.000+23x5.000
U24=50.000 + 115.000
U24=165.000
lalu
Sn=n/2(a+Un)
S24=24/2(50.000+165.000)
S24=12(215.000)
S24=2.580.000

 

Nomor 37.

 

 

Nomor 38.

 

 

Nomor 39.

 

 

Nomor40.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 


Tidak ada komentar:

Posting Komentar

JAWABAN SOAL NO: 10 LIMIT, TURUNAN, INTEGRAL

Egha Ramdhani (10) XI IPS 3 SOAL 10.  Nilai Lim  dari                 2x³   -   5        adalah ........                                x  ⟶...