Halo Teman Teman Kali ini Saya Egha Ramdhani Akan Membahas Apa itu Logika Matematika
Ada 13 Hukum logika yaitu :
- Hukum komutatif
- p ∧ q ≡ q ∧ p
- p ∨ q ≡ q ∨ p
- Hukum asosiatif
- (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
- (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
- Hukum distributif
- p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
- p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
- Hukum identitas
- p ∧ B ≡ p
- p ∨ S ≡ p
- Hukum ikatan
- p ∧ S ≡ S
- p ∨ B ≡ B
- Hukum negasi
- p ∧ ~p ≡ S
- p ∨ ~p ≡ B
- Hukum negasi ganda
- ~(~p) ≡ p
- Hukum idempotent
- p ∧ p ≡ p
- p ∨ p ≡ p
- Hukum De Morgan
- ~(p ∧ q) ≡ ~p ∨ ~q
- ~(p ∨ q) ≡ ~p ∧ ~q
- Hukum penyerapan
- p ∧ (p ∨ q) ≡ p
- p ∨ (p ∧ q) ≡ p
- Negasi B dan S
- ~B ≡ S
- ~S ≡ B
- p → q ≡ ~p ∨ q
- p ↔ q ≡ (~p ∨ q) ∧ (p ∨ ~q)
Ada Beberapa Jenis Operasi pada tabel kebenaran Yaitu :
- Negasi
Tabel kebenaran untuk TIDAK p (juga ditulis ¬p, Np, Fpq, or ~p) adalah di bawah ini:
p | ¬p |
---|---|
B | S |
S | B |
- Konjungsi
Tabel kebenaran untuk p DAN q (juga ditulis p ∧ q, Kpq, p & q, atau p q) adalah di bawah ini:
p | q | p ∧ q |
---|---|---|
B | B | B |
B | S | S |
S | B | S |
S | S | S |
- Disjungsi inklusif (sering disebut sebagai disjungsi saja)
Tabel kebenaran untuk p ATAU q (juga ditulis p ∨ q, Apq, p || q, or p + q) adalah di bawah ini:
p | q | p ∨ q |
---|---|---|
B | B | B |
B | S | B |
S | B | B |
S | S | S |
- Implikasi
Tabel kebenaran untuk XN p (juga ditulis p → q, Cpq, p ⇒ q) adalah di bawah ini:
p | q | p ⇒ q |
---|---|---|
B | B | B |
B | S | S |
S | B | B |
S | S | B |
- Kesamaan atau Bikondisional (sering disebut sebagai biimplikasi saja)
Tabel kebenaran untuk p XNOR q (juga ditulis p ↔ q, Epq, p = q, or p ≡ q) adalah di bawah ini:
p | q | p ≡ q |
---|---|---|
B | B | B |
B | S | S |
S | B | S |
S | S | B |
- Disjungsi eksklusif
Tabel kebenaran untuk p XOR q (juga ditulis p ⊕ q, Jpq, or p ≠ q) adalah di bawah ini:
p | q | p ⊕ q |
---|---|---|
B | B | S |
B | S | B |
S | B | B |
S | S | S |
dan Di logika Matematika ada yang namanya Invers,Konvers,dan Kontraposisi
- nvers dari adalah ~p → ~q
- Konvers dari adalah q → p
- Kontraposisi dari adalah ~q → ~p
Ada cara penarikan Kesimpulan di logika matematika yaitu :
Modus ponens
- premis 1: p → q
- premis 2: p
- kesimpulan: q
Modus tollens
- premis 1: p → q
- premis 2: ~q
- kesimpulan: ~p
Silogisme
- premis 1: p → q
- premis 2: q → r
- kesimpulan: p → r
- CONTOH Soal Logika Matematika
Soal No. 1
Tentukan pernyataan majemuk hasil penggabungan pasangan-pasangan pernyataan berikut dengan menggunakan operasi konjungsi (DAN):
a) p : Hari ini Jakarta hujan
q : Hari ini Jakarta banjir
b) p : Iwan memakai topi
q : Iwan memakai dasi
c) p : Mahesa anak jenius.
q : Mahesa anak pemalas.
Pembahasan
a) p : Hari ini Jakarta hujan
q : Hari ini Jakarta banjir
p ∧ q : Hari ini Jakarta hujan dan banjir
b) p : Iwan memakai topi
q : Iwan memakai dasi
p ∧ q : Iwan memakai topi dan dasi
c) p : Mahesa anak jenius.
q : Mahesa anak pemalas.
p ∧ q : Mahesa anak jenius tetapi pemalas
Kata "dan" bisa diganti dengan "tetapi", "walaupun", "meskipun" selaraskan dengan pernyataan.
Soal No. 2
Diberikan dua pernyataan sebagai berikut:
a) p : Hari ini Jakarta hujan lebat.
q : Hari ini aliran listrik putus.
Nyatakan dengan kata-kata:
a) p ∧ q
b) p ∧ ~q
c) ~p ∧ q
d) ~p ∧ ~q
Pembahasan
a) Hari ini Jakarta hujan lebat dan aliran listrik putus
b) Hari ini Jakarta hujan lebat dan aliran listrik tidak putus
c) Hari ini Jakarta tidak hujan lebat dan aliran listrik putus
d) Hari ini Jakarta tidak hujan lebat dan aliran listrik tidak putus
Soal No. 3
Diberikan data:
Pernyataan p bernilai salah
Pernyataan q bernilai benar
Tentukan nilai kebenaran dari konjungsi di bawah ini:
a) p ∧ q
b) p ∧ ~q
c) ~p ∧ q
d) ~p ∧ ~q
Pembahasan
Tabel Nilai kebenaran untuk konjungsi :p q p ∧ q B B B B S S S B S S S S
Terlihat bahwa konjungsi bernilai benar jika kedua pernyataan bernilai benar.
Kita terapkan pada soal salah satunya dengan cara tabel:p q ~p ~q p ∧ q p ∧ ~q ~p ∧ q ~p ∧ ~q S B B S S S B S
Dari tabel di atas
a) p ∧ q bernilai salah
b) p ∧ ~q bernilai salah
c) ~p ∧ q bernilai benar
d) ~p ∧ ~q bernilai salahSoal No. 4
Tentukan negasi dari pernyataan-pernyataan berikut:a) Hari ini Jakarta banjir.
b) Kambing bisa terbang.
c) Didi anak bodoh
d) Siswa-siswi SMANSA memakai baju batik pada hari Rabu.
Pembahasan
a) Tidak benar bahwa hari ini Jakarta banjir.
b) Tidak benar bahwa kambing bisa terbang.
c) Tidak benar bahwa Didi anak bodoh
d) Tidak benar bahwa siswa-siswi SMANSA memakai baju batik pada hari Rabu.
Atau boleh juga dengan format berikut:
a) Hari ini Jakarta tidak banjir.
b) Kambing tidak bisa terbang.
c) Didi bukan anak bodoh
d) Siswa-siswi SMANSA tidak memakai baju batik pada hari Rabu.
Soal No. 5
Tentukan negasi (ingkaran) dari pernyataan-pernyataan berikut:
a) p : Semua dokter memakai baju putih saat bekerja.
b) p : Semua jenis burung bisa terbang
c) p : Semua anak mengikuti ujian fisika hari ini.
Pembahasan
Pernyataan yang memuat kata "Semua" atau "Setiap" negasinya memuat kata "Beberapa" atau "Ada" seperti berikut:
a) ~p : Ada dokter tidak memakai baju putih saat bekerja.
b) ~p : Beberapa jenis burung tidak bisa terbang
c) ~p : Beberapa anak tidak mengikuti ujian fisika hari ini.
Tidak ada komentar:
Posting Komentar