Minggu, 30 Agustus 2020

MATRIKS

 PENGERTIAN MATRIKS

     Dalam matematika, matriks adalah susunan bilangan, simbol, atau ekspresi yang disusun dalam baris dan kolom sehingga membentuk suatu bangun persegi. Sebagai contoh, dimensi matriks di bawah ini adalah 2 × 3 karena terdiri dari dua baris dan tiga kolom:

 
jika dua matriks memiliki ukuran yang sama (masing-masing matriks memiliki jumlah baris dan jumlah kolom yang sama), kedua matriks tersebut dapat dijumlahkan maupun dikurangkan secara elemen demi elemen. Namun, berdasarkan aturan perkalian matriks, dua matriks hanya dapat dikalikan jika jumlah kolom matriks pertama sama dengan jumlah baris matriks kedua (artinya, perkalian matriks (m×n) dengan matriks (n×p) menghasilkan matriks (m×p)). Perkalian matriks tidak bersifat komutatif
 
Setiap objek dalam matriks ukuran sering dilambangkan dengan , dimana nilai maksimum dan nilai maksimum . Objek dalam matriks disebut elemen, entri, atau anggota matriks

 

MACAM-MACAM MATRIKS 

Ada beberapa jenis jenis matriks dalam matematika yang perlu diketahui, termasuk matriks kolom, matriks baris, matriks persegi, matriks diagonal, matriks identitas, matriks skalar, matriks nol, matriks transpose, dan matriks simetri. Berikut ini penjelasan jenis-jenis matriks.

Matriks kolom

Ini adalah matriks yang hanya memiliki satu kolom. Secara umum matriks kolom berordo m x 1 dapat dinotasikan sebagai  A=[aij]m×1

Matriks baris

Ini adalah matriks yang hanya memiliki satu baris. Secara umum matriks baris berordo 1 x n dapat dinotasikan sebagai  B=[bij]1×n.

Matriks persegi

Ini adalah matriks yang memiliki banyak baris dan kolom yang sama. Secara umum matriks persegi berordo m x m dapat dinotasikan sebagai A =  [aij]m×m

Matriks diagonal

Ini adalah matriks persegi yang semua elemen-elemennya bernilai nol kecuali elemen diagonal utama. Matriks B = [bij]m×n dikatakan matriks diagonal jika  bij =0 untuk  i≠j.

Matriks Identitas

Ini adalah matriks diagonal yang semua elemen diagonal utamanya bernilai 1. Matriks identitas dengan ordo n x n ditulis In.

Matriks Skalar

Ini adalah matriks hasil kali antara suatu skalar dengan matriks identitas. Elemen-elemen dalam diagonal utama bernilai sama dengan skalar.

Matriks Nol

Ini adalah semua matriks yang elemennya bernilai nol. Matriks nol dinotasikan dengan O.

Matriks Transpose

Ini adalah matriks yang diperoleh dengan cara mengubah baris matriks menjadi kolom matriks. Matriks Transpose dilambangkan dengan AT atau A’.

Matriks Simetri

Matriks persegi A = [aij] disebut matriks simetris, jika AT = A atau aji = aij untuk semua i, j.

 

OPERASI HITUNG MATRIKS 

Penjumlahan Matriks

Operasi hitung matriks pada penjumlahan memiliki syarat yang harus dipenuhi agar dua buah matriks dapay dijumlahkan. Syarat dari dua buah matriks atau lebih dapat dijumlahkan jika memiliki nilai ordo yang sama. Artinya, semua matriks yang dijumlahkan harus memiliki jumlah baris dan kolom yang sama.

Matriks dengan jumlah baris 3 dan kolom 4 hanya bisa dijumlahkan dengan matriks dengan jumlah baris 3 dan kolom 4. Matriks dengan jumlah baris 3 dan kolom 4 tidak bisa dijumlahkan dengan matriks dengan jumlah baris 4 dan kolom 3. Kesimpulannya, jumlah baris dan kolom antar dua matriks yang akan dijumlahkan harus sama.

Operasi hitung penjumlahan matriks memenuhi sifat komutatif, asosiatif, memiliki matriks identitas matriks nol, dan memiliki lawan matriks. Lawan matriks A adalah matriks -A, di mana elemen-elemen matriks -A merupakan lawan dari elemen-elemen matriks A. Secara ringkas, sifat operasi penjumlahan matriks dapat dilihat pada gambar di bawah.

Sifat-sifat operasi penjumlahan matriks

Selanjutnya, kita akan mempelajari cara melakukan operasi hitung penjumlahan dua buah matriks. Penjelasan akan diberikan dalam bentuk contoh soal secara umum.

Contoh cara melakukan operasi penjumlahan pada matriks:

Penjumlahan Matriks
 

Bagaimana penjelasan mengenai penjumlahan matriks, mudah bukan? Sekarang kita akan masuk pada pembahasan selanjutnya yaitu operasi hitung pengurangan matriks. Simak uraian di bawah.

 

Pengurangan Matriks

Seperti halnya operasi hitung penjumlahan matriks, syarat agar dapat mengurangkan elemen-elemen antar matriks adalah matriks harus memiliki nilai ordo yang sama. Cara melakukan operasi pengurangan pada matriks dapat dilihat seperti cara di bawah.

Pengurangan Matriks

Cara melakukan operasi pengurangan dua matriks tidak jauh berbeda dengan penjumlahan matriks. Untuk lebih jelasnya, perhatikan contoh soal pengurangan matriks secara umum yang akan diberikan di bawah.

Contoh cara melakukan operasi pengurangan pada matriks:

 
Pengurangan Dua Matriks

 
 

Perkalian Matriks

Pembahasan operasi hitung matriks selanjutnya yang akan dibahas adalah perkalian matriks. Perkalian matriks yang akan dibahas di bawah adalah perkalian matriks dengan skalar dan perkalian matriks dengan matriks. Selengkapnya simak operasi hitung perkalian matriks di bawah.

Perkalian Matriks dengan Skalar

Cara melakukan operasi skalar pada matriks adalah dengan mengalikan semua elemen-elemen matriks dengan skalarnya. Jika k adalah suatu konstanta dan A adalah matriks, maka cara melakukan operasi perkalian skalar dapat dilihat melalui cara di bawah.

Perkalian Matriks dengan Skalar

 

Cara melakukan perkalian matriks dengan skalar cukup mudah dilakukan. Contoh soal cara melakukan perkalian matriks yang akan diberikan di bawah akan menambah pemahaman sobat idschool.

Contoh cara melakukan operasi perkalian skalar pada matriks:

Diketahui konstanta k = 2 dan sebuah matriks A dengan persamaan seperti di bawah.

    \[ \textrm{A} \; = \begin{bmatrix} 1 & 2 \\ 3 & 4  \\ 5 & 6  \\ 7 & 8 \end{bmatrix}\]

Maka hasil perkalian konstanta k dengan matriks A adalah sebagai berikut.

    \[ k\textrm{A} \; = 2 \begin{bmatrix} 1 & 2 \\ 3 & 4  \\ 5 & 6  \\ 7 & 8 \end{bmatrix}\]

    \[ k\textrm{A} \; = \begin{bmatrix} 2 & 4 \\ 6 & 8  \\ 10 & 12  \\ 14 & 16 \end{bmatrix}\]

 

Uraian selanjutnya adalah cara melakukan perkalian dua matriks.

 Operasi Perkalian Dua Matriks

Seperti yang telah disinggung sebelumnya, syarat dua buah matriks dapat dikalikan jika memiliki jumlah kolom matriks pertama yang sama dengan jumlah baris matriks ke dua. Ordo matriks hasil perkalian dua matriks adalah jumlah baris pertama dikali jumlah kolom ke dua.

Matriks A memiliki jumlah kolom sebanyak m dan jumlah baris r, matriks B memiliki jumlah kolom sebanyak r dan jumlah baris m, hasil perkalian matriks A dan B adalah matriks C dengan jumlah kolom m dan jumlah baris n.

 
Perkalian Matriks

 

Sebelum mengulas cara melakukan operasi perkalian dua buah matriks, sebaiknya kita perlajari dahulu sidat-sifat operasi perkalian dua matriks. Sifat-sifat operasi perkalian matriks meliputi sifat asosiatif, distributif, dan memiliki matriks identitas I. Sifat-sifat operasi perkalian matriks dapat dilihat pada gambar di bawah.

Operasi Hitung pada Matriks dan Sifat-sifatnya

Sifat-sifat matriks di atas dapat digunakan untuk memudahkan perhitungan dalam melakukan operasi hitung matriks.

Sekarang, pembahasan kita masuk pada perkalian dua matriks. Untuk pembahasan pertama kita akan mempelajari cara melakukan perkalian matriks dengan ukuran 2 \times 2 dan matriks dengan ukuran 2 \times 1.

 

Proses cara melakukan operasi perkalian matriksdengan ukuran 2 \times 2 dan matriks dengan ukuran 2 \times 1 dapat disimak pada pembahasan di bawah.

Diketahui:

    \[ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \]

    \[ B = \begin{bmatrix} x & y \end{bmatrix} \]

 
Perkalian dua matriks A \times B dapat diperoleh dengan cara di bawah.
 
Perkalian Matriks
 

Selanjutnya adalah perkalian dua matriks. Kedua matriks yang akan dioperasikan sama-sama berukuran 2 \times 2. Selengkapnya, simak pembahasan di bawah.

Diketahui:

    \[ P = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \]

    \[ Q = \begin{bmatrix} k & l \\ m & n \end{bmatrix} \]

 
Maka perkalian dua matriks P \cdot Q dapat diperoleh dengan cara di bawah.
 

perkalian matriks

 

Untuk lebih jelasnya akan ditunjukkan dari contoh soal operasi perkalian dua matriks seperti yang ditunjukkan di bawah.

Diketahui:

    \[ P = \begin{bmatrix} 2 & 3 \\ 5 & 2 \end{bmatrix} \]

    \[ Q = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix} \]

Maka:

    \[ P \cdot Q = \begin{bmatrix} 2 & 3 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}  \]

    \[ P \cdot Q =  \begin{bmatrix} 2 \cdot 1 + 3 \cdot 4  &  2 \cdot 3 + 3 \cdot 2  \\ 5 \cdot 1 + 2 \cdot 4 & 5 \cdot 3 + 2 \cdot 2 \end{bmatrix} \]

    \[ P \cdot Q =  \begin{bmatrix} 2 + 12  &  6 + 6  \\ 5 + 8 & 15 + 4 \end{bmatrix} \]

   \[ P \cdot Q = \begin{bmatrix} 14 & 12 \\ 13 & 19 \end{bmatrix} \]

 CONTOH SOAL MATRIKS

Contoh Soal 1

Jika diketahui persamaan metrik !

A. 4
B. 5
C. 7
D. 29
E. 31

Pembahasannya :

Karena kedua matriks sama, maka elemen-elemen yang seletak akan sama pula, sehingga berlaku:

2x + 1 = 3
2x = 2
x = 1
y + 12 = 15
y = 3
x + y = 1 + 3 = 4

Jadi Jawabanya adalah : 4 (a)

Contoh Soal 2


 Contoh Soal 3

 

Contoh Soal 4

Jika determinan nilai matriks A adalah 4 kali determinan nilai matriks B, maka nilai x adalah…

 A. 4/3 
B. 8/3 
C. 10/4 
D. 5/3 
E. 16/7

Pembahasannya:
det A = 4 det B 
x (16 x ) – (-16) = 4 (108 – (-152)) 
x (4 2x ) + 16 = 4 (260) 
3x = 4 (260) – 16 
3x = 4 (260) – 4 (4) 
3x = 4 (260 – 4) 
3x = 4 (256) 
3x = 4. 4 4
3x = 4 5
3x = 5 
x = 5/3

Jawabannya : D
 

Contoh Soal 5 

 

 

SC :
https://idschool.net/sma/operasi-hitung-penjumlahan-pengurangan-perkalian-matriks/
https://rumus.waheedbaly.com/contoh-soal-matriks-dan-jawabannya-kelas-11/
 

 

 

 

Tidak ada komentar:

Posting Komentar

JAWABAN SOAL NO: 10 LIMIT, TURUNAN, INTEGRAL

Egha Ramdhani (10) XI IPS 3 SOAL 10.  Nilai Lim  dari                 2x³   -   5        adalah ........                                x  ⟶...